Filtering of the ARMAX Process with Generalized t‐Distribution Noise: The Influence Function Approach

نویسندگان

  • Weng Khuen Ho
  • Keck Voon Ling
  • Hoang Dung Vu
  • Xiaoqiong Wang
چکیده

The commonly made assumption of Gaussian noise is an approximation to reality. In this paper, influence function, an analysis tool in robust statistics, is used to formulate a recursive solution for the filtering of the ARMAX process with generalized t-distribution noise. By being a superset encompassing Gaussian, uniform, t, and double exponential distributions, generalized t-distribution has the flexibility of characterizing noise with Gaussian or non-Gaussian statistical properties. The filter is formulated as a maximum likelihood problem, but instead of solving the optimization problem numerically, influence function approximation is used to obtain a recursive solution to reduce the computational load and facilitate real-time implementation. The influence function equations derived are also useful in determining the variance of the filter and the impact of outliers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Bayesian approach for image denoising in MRI

Magnetic Resonance Imaging (MRI) is a notable medical imaging technique that is based on Nuclear Magnetic Resonance (NMR). MRI is a safe imaging method with high contrast between soft tissues, which made it the most popular imaging technique in clinical applications. MR Imagechr('39')s visual quality plays a vital role in medical diagnostics that can be severely corrupted by existing noise duri...

متن کامل

Moving Horizon Estimation for ARMAX process with t-Distribution Noise

In this paper, instead of the usual Gaussian noise assumption, t-distribution noise is assumed. AMaximum Likelihood Estimator using the most recent N measurements is proposed for the Auto-Regressive-Moving-Average with eXogenous input (ARMAX) process with this assumption. The proposed estimator is robust to outliers because the ‘thick tail’ of the t-distribution reduces the effect of large erro...

متن کامل

Application of Single-Frequency Time-Space Filtering Technique for Seismic Ground Roll and Random Noise Attenuation

Time-frequency filtering is an acceptable technique for attenuating noise in 2-D (time-space) and 3-D (time-space-space) reflection seismic data. The common approach for this purpose is transforming each seismic signal from 1-D time domain to a 2-D time-frequency domain and then denoising the signal by a designed filter and finally transforming back the filtered signal to original time domain. ...

متن کامل

Adaptive-Filtering-Based Algorithm for Impulsive Noise Cancellation from ECG Signal

Suppression of noise and artifacts is a necessary step in biomedical data processing. Adaptive filtering is known as useful method to overcome this problem. Among various contaminants, there are some situations such as electrical activities of muscles contribute to impulsive noise. This paper deals with modeling real-life muscle noise with α-stable probability distribution and adaptive filterin...

متن کامل

An Adaptive Hierarchical Method Based on Wavelet and Adaptive Filtering for MRI Denoising

MRI is one of the most powerful techniques to study the internal structure of the body. MRI image quality is affected by various noises. Noises in MRI are usually thermal and mainly due to the motion of charged particles in the coil. Noise in MRI images also cause a limitation in the study of visual images as well as computer analysis of the images. In this paper, first, it is proved that proba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018